Dividing polynomials using synthetic division worksheet answers

  1. Last updated
  2. Save as PDF
  • Page ID45238
  • A: Concepts

    Exercise \(\PageIndex{A}\)

    1) If division of a polynomial by a binomial results in a remainder of zero, what can be conclude?

    2) If a polynomial of degree \(n\) is divided by a binomial of degree \(1\), what is the degree of the quotient?

    Answers to odd exercises:

    1. The binomial is a factor of the polynomial.

    B: Perform Polynomial Long Division

    Exercise \(\PageIndex{B}\) 

    \( \bigstar \) Use long division to divide.  Also specify the quotient and the remainder.

    3) \((x^2+5x−1)÷(x−1)\)

    4) \((2x^2−9x−5)÷(x−5)\)

    5) \((3x^2+23x+14)÷(x+7)\)

    6) \((4x^2−10x+6)÷(4x+2)\)

    7) \((6x^2−25x−25)÷(6x+5)\)

    8) \((−x^2−1)÷(x+1)\)

    9) \((2x^2−3x+2)÷(x+2)\)

    10) \((x^3−126)÷(x−5)\)

    11) \((3x^2−5x+4)÷(3x+1)\)

    12) \((x^3−3x^2+5x−6)÷(x−2)\)

    13) \((2x^3+3x^2−4x+15)÷(x+3)\)

    \( \bigstar \) Divide. 

    14) \(\dfrac{x^{3}-5 x^{2}+x+15}{x-3}\)

    15) \(\dfrac{y^{3}-4 y^{2}+6 y-4}{y-2}\)

    16) \(\dfrac{x^{5}+3 x+2}{x^{3}+2 x+1}\) 

    17) \(\dfrac{2 z^{3}+5 z+8}{z+1}\)

    18) \(\dfrac{3 x^{5}-4 x^{3}+3 x^{2}+12 x-10}{x^{2}+2 x-1}\)

    19) \(\dfrac{2 y^{5}-3 y^{4}-y^{2}+y+4}{y^{2}+1}\)

    20) \(\dfrac{3 y^{3}-4 y^{2}-3}{y^{2}+5 y+2}\)

    21) \(\dfrac{5 x^{4}-3 x^{2}+2}{x^{2}-3 x+5}\)

    Answers to odd exercises:

    3. \(\mathrm{x+6+\dfrac{5}{x−1},
    quotient: x+6, remainder: 5}\)

    5. \(\mathrm{3x+2,
    quotient: 3x+2, remainder: 0}\)

    7. \(\mathrm{x−5,
    quotient: x−5, remainder: 0}\)

    9. \(\mathrm{2x−7+\dfrac{16}{x+2},
    quotient: 2x−7, remainder: 16}\)

    11. \(\mathrm{x−2+\dfrac{6}{3x+1},
    quotient: x−2, remainder: 6}\)

    13. \(\mathrm{2x^2−3x+5,
    quotient: 2x^2−3x+5, remainder: 0}\)

    15. \( y^2-2y+2 \)

    17. \( 2z^2-2z+7 + \dfrac{1}{z+1} \)

    19. \( 2y^3 -3y^2 -2y +2 +\dfrac{3y+2}{y^2+1} \)

    21. \( 5x^2 + 15x + 17 + \dfrac{-24x-83}{x^2-3 x+5} \)

    C: Use Long Division to Rewrite a Polynomial

    Exercise \(\PageIndex{C}\) 

    \( \bigstar \) Use polynomial long division to perform the indicated division. Write the polynomial dividend in the form \(p(x) = d(x)q(x) + r(x)\).

    23. \(\left(4x^2+3x-1 \right) \div (x-3)\) 

    24) \(\dfrac{x^{3}-4 x^{2}-3 x-10}{x^{2}+x+2}\)

    25. \(\left(2x^3-x+1 \right) \div \left(x^{2} +x+1 \right)\)

    26) \(\dfrac{2 x^{3}-3 x^{2}+7 x-3}{x^{2}-x+3}\)

    27. \(\left(5x^{4} - 3x^{3} + 2x^{2} - 1 \right) \div \left(x^{2} + 4 \right)\)

    28) \(\dfrac{x^{4}+2 x^{3}-x^{2}+x+6}{x+2}\)

    29. \(\left(-x^{5} + 7x^{3} - x \right) \div \left(x^{3} - x^{2} + 1 \right)\)

    30) \(\dfrac{x^{4}+x^{3}+5 x^{2}+3 x+6}{x^{2}+x-1}\)

    31. \(\left(9x^{3} + 5 \right) \div \left(2x - 3 \right)\)

    32) \(\dfrac{x^{4}+2 x^{3}+4 x^{2}+3 x+2}{x^{2}+x+2}\)

    33. \(\left(4x^2 - x - 23 \right) \div \left(x^{2} - 1 \right)\) 

    34) \(\dfrac{2 x^{4}+3 x^{3}+3 x^{2}-5 x-3}{2 x^{2}-x-1}\)

    Answers to odd exercises:

    23. \(4x^2+3x-1 = (x-3)(4x+15) + 44\)

    25. \(2x^3-x+1 = \left(x^2+x+1\right)(2x-2)+(-x+3)\)

    27. \(5x^{4} - 3x^{3} + 2x^{2} - 1 = \left(x^{2} + 4 \right) \left(5x^{2} - 3x - 18 \right) + (12x + 71)\)

    29. \(-x^{5} + 7x^{3} - x = \left(x^{3} - x^{2} + 1 \right) \left(-x^{2} - x + 6 \right) + \left(7x^{2} - 6 \right)\)

    31. \(9x^{3} + 5 =(2x - 3) \left(\frac{9}{2}x^{2} + \frac{27}{4}x + \frac{81}{8} \right) + \frac{283}{8}\)

    33. \(4x^2 - x - 23 = \left(x^{2} - 1 \right)(4) + (-x - 19)\)

    D: Perform Synthetic Division

    Exercise \(\PageIndex{D}\) 

    \( \bigstar \) Use synthetic division to divide. Also state the quotient and remainder.

    35) \(\dfrac{4x^3−33}{x−2}\)

    36) \(\dfrac{2x^3+25}{x+3}\)

    37) \(\dfrac{3x^3+2x−5}{x−1}\)

    38) \(\dfrac{−4x^3−x^2−12}{x+4}\)

    39) \(\dfrac{x^4−22}{x+2}\)

     \( \bigstar \)For the exercises below, use synthetic division to find the quotient.

    40) \((3x^3−2x^2+x−4)÷(x+3)\)

    41) \((2x^3−6x^2−7x+6)÷(x−4)\)

    42) \((6x^3−10x^2−7x−15)÷(x+1)\)

    43) \((4x^3−12x^2−5x−1)÷(2x+1)\)

    44) \((9x^3−9x^2+18x+5)÷(3x−1)\)

    45) \((3x^3−2x^2+x−4)÷(x+3)\)

    46) \((−6x^3+x^2−4)÷(2x−3)\)

    47) \((2x^3+7x^2−13x−3)÷(2x−3)\)

    48) \((3x^3−5x^2+2x+3)÷(x+2)\)

    49) \((4x^3−5x^2+13)÷(x+4)\)

    50) \((x^3−3x+2)÷(x+2)\)

    51) \((x^3−21x^2+147x−343)÷(x−7)\)

    52) \((x^3−15x^2+75x−125)÷(x−5)\)

    53) \((9x^3−x+2)÷(3x−1)\)

    54) \((6x^3−x^2+5x+2)÷(3x+1)\)

    55) \((x^4+x^3−3x^2−2x+1)÷(x+1)\)

    56) \((x^4−3x^2+1)÷(x−1)\)

    57) \((x^4+2x^3−3x^2+2x+6)÷(x+3)\)

    58) \((x^4−10x^3+37x^2−60x+36)÷(x−2)\)

    59) \((x^4−8x^3+24x^2−32x+16)÷(x−2)\)

    60) \((x^4+5x^3−3x^2−13x+10)÷(x+5)\)

    61) \((x^4−12x^3+54x^2−108x+81)÷(x−3)\)

    62) \((4x^4−2x^3−4x+2)÷(2x−1)\)

    63) \((4x^4+2x^3−4x^2+2x+2)÷(2x+1)\)

    Answers to odd exercises:

    35. \( 4x^2+8x+16 + \frac{-1}{x−2}\),
    \(\mathrm{Quotient: 4x^2+8x+16, remainder: −1}\)

    37. \( 3x^2+3x+5\) ,
    \(\mathrm{Quotient: 3x^2+3x+5, remainder: 0}\)

    39. \( x^3−2x^2+4x−8 + \frac{-6}{x+2}\),
    \(\mathrm{Quotient: x^3−2x^2+4x−8, remainder: −6}\)

    41. \(2x^2+2x+1+\dfrac{10}{x−4}\)

    43. \(2x^2−7x+1−\dfrac{2}{2x+1}\)

    45. \(3x^2−11x+34−\dfrac{106}{x+3}\)

    47. \(x^2+5x+1\)

    49. \(4x^2−21x+84−\dfrac{323}{x+4}\)

    51. \(x^2−14x+49\)

    53. \(3x^2+x+\dfrac{2}{3x−1}\)

    55. \(x^3−3x+1\)

    57. \(x^3−x^2+2\)

    59. \(x^3−6x^2+12x−8\)

    61. \(x^3−9x^2+27x−27\)

    63. \(2x^3−2x+2\)

    E: Use Synthetic Division to Rewrite a Polynomial

    Exercise \(\PageIndex{E}\) 

    \( \bigstar \) For the exercises below, use synthetic division to determine whether the first expression is a factor of the second. If it is, write the second expression as a product of two factors.

    64) \(x−2, \; 4x^3−3x^2−8x+4\)

    65) \(x−2, \; 3x^4−6x^3−5x+10\)

    66) \(x+3, \; −4x^3+5x^2+8\)

    67) \(x−2, \; 4x^4−15x^2−4\)

    68) \(x−\dfrac{1}{2}, \; 2x^4−x^3+2x−1\)

    69) \(x+\dfrac{1}{3}, \; 3x^4+x^3−3x+1\)

    \( \bigstar \) In the exercises below, use synthetic division to perform the indicated division. Write the polynomial in the form\(p(x) = d(x)q(x) + r(x)\).

    70. \(\left(3x^2-2x+1 \right) \div \left(x-1\right)\) 

    71. \(\left(x^2-5 \right) \div \left(x-5\right)\)

    72. \(\left(3-4x-2x^2 \right) \div \left(x+1\right)\)

    73. \(\left(4x^2-5x +3\right) \div \left(x+3\right)\)

    74. \(\left(x^3 + 8 \right) \div \left(x+2\right)\)

    75. \(\left(4x^3 +2x-3 \right) \div \left(x -3\right)\)

    76. \(\left(18x^2-15x-25\right) \div \left(x - \frac{5}{3} \right)\)

    77. \(\left(4x^2-1 \right) \div \left(x - \frac{1}{2} \right)\)

    78. \(\left(2x^3+x^2+2x+1 \right) \div \left(x + \frac{1}{2} \right)\)

    79. \(\left(3x^3 - x + 4 \right) \div \left(x - \frac{2}{3} \right)\)

    80. \(\left(2x^3 - 3x +1 \right) \div \left(x - \frac{1}{2} \right)\)

    81. \(\left(4x^4-12x^3+13x^2 -12x+9\right) \div \left(x - \frac{3}{2} \right)\)

    82. \(\left(x^4-6x^2+9 \right) \div \left(x -\sqrt{3} \right)\)

    83. \(\left(x^6-6x^4+12x^2-8\right) \div \left(x +\sqrt{2} \right)\) 

    Answers to odd exercises:

    65. Yes \((x−2)(3x^3−5)\)

    67. Yes \((x−2)(4x^3+8x^2+x+2)\)

    69. No

    71. \(\left(x^2-5 \right)= \left(x-5\right)(x+5) + 20\)

    73. \(\left(4x^2-5x +3\right) = \left(x+3\right)(4x-17)+54\)

    75. \(\left(4x^3 +2x-3 \right) = \left(x -3\right) \left(4x^2+12x+38\right) + 111\)

    77. \(\left(4x^2-1 \right) = \left(x - \frac{1}{2} \right)(4x+2)+0\)

    79. \(\left(3x^3 - x + 4 \right) = \left(x - \frac{2}{3} \right) \left(3x^2+2x+\frac{1}{3}\right) + \frac{38}{9}\)

    81. \(\left(4x^4-12x^3+13x^2 -12x+9\right) = \left(x - \frac{3}{2} \right) \left(4x^3-6x^2+4x-6 \right)+0\)

    83. \(\left(x^6-6x^4+12x^2-8\right) = \left(x +\sqrt{2} \right) \left(x^5-\sqrt{2} \, x^4-4x^3+4\sqrt{2} \, x^2+4x-4\sqrt{2}\right) + 0\)

    F: Synthetic Division with Complex Numbers

    Exercise \(\PageIndex{F}\) 

    \( \bigstar \) For the exercises below, use synthetic division to determine the quotient involving a complex number.

    85) \(\dfrac{x+1}{x−i}\) 86) \(\dfrac{x^2+1}{x−i}\) 87) \(\dfrac{x+1}{x+i}\) 88) \(\dfrac{x^2+1}{x+i}\) 89) \(\dfrac{x^3+1}{x−i}\)

    \( \bigstar \) Find the remainder. 

    90) \((x^4−9x^2+14)÷(x−2)\)

    91) \((3x^3−2x^2+x−4)÷(x+3)\)

    92) \((x^4+5x^3−4x−17)÷(x+1)\)

    93) \((−3x^2+6x+24)÷(x−4)\)

    94) \((5x^5−4x^4+3x^3−2x^2+x−1)÷(x+6)\)

    95) \((x^4−1)÷(x−4)\)

    96) \((3x^3+4x^2−8x+2)÷(x−3)\)

    97) \((4x^3+5x^2−2x+7)÷(x+2)\)

    Answers to odd exercises:

    85. \(1+\dfrac{1+i}{x−i}\)

    87. \(1+\dfrac{1−i}{x+i}\)

    89. \(x^2+ix−1+\dfrac{1−i}{x−i}\)

    91. \(−106\), \(f(2) = -106\)

    93. \(0\), \(f(4) = 0 \)

    95. \(255\), \(f(4) = 255 \)

    97. \(−1\), \(f(-2) = -1 \)

    G: Construct a polynomial from a graph and a given Factor

    Exercise \(\PageIndex{G}\) 

    \( \bigstar \) Use the graph of the third-degree polynomial and one factor to write the factored form of the polynomial suggested by the graph. The leading coefficient is one.

    98) Factor is \(x^2−x+3\)

    Dividing polynomials using synthetic division worksheet answers

    99) Factor is \((x^2+2x+4)\)

    Dividing polynomials using synthetic division worksheet answers

    100) Factor is \(x^2+2x+5\)

    Dividing polynomials using synthetic division worksheet answers

    101) Factor is \(x^2+2x+2\)

    Dividing polynomials using synthetic division worksheet answers

    102) Factor is \(x^2+x+1\)

    Dividing polynomials using synthetic division worksheet answers

    Answers to odd exercises:
    99. \((x−1)(x^2+2x+4)\) 101. \((x+3)(x^2+2x+2)\)

    How do you divide using synthetic division?

    Synthetic division is another way to divide a polynomial by the binomial x - c , where c is a constant..
    Step 1: Set up the synthetic division. ... .
    Step 2: Bring down the leading coefficient to the bottom row..
    Step 3: Multiply c by the value just written on the bottom row. ... .
    Step 4: Add the column created in step 3..

    What is division of polynomials using long division and synthetic division?

    Long and synthetic division are two ways to divide one polynomial (the dividend) by another. polynomial (the divisor). These methods are useful when both polynomials contain more than. one term, such as the following two-term polynomial: 2 + 3.

    How do I divide polynomials?

    Dividing Polynomials Using Long Division.
    Divide the first term of the dividend (4x2) by the first term of the divisor (x), and put that as the first term in the quotient (4x)..
    Multiply the divisor by that answer, place the product (4x2 - 12x) below the dividend..
    Subtract to create a new polynomial (7x - 21)..